Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
CALF-20, a Zn-triazolate-based metal-organic framework (MOF), is one of the most promising adsorbent materials for CO2 capture. However, competitive adsorption of water severely limits its performance when the relative humidity (RH) exceeds 40%, limiting the potential implementation of CALF-20 in practical settings where CO2 is saturated with moisture, such as post-combustion flue gas. In this work, three newly designed MOFs related to CALF-20, denoted as NU-220, CALF-20M-w, and CALF-20M-e that feature hydrophobic methyl-triazolate linkers are presented. Inclusion of methyl groups in the linker is proposed as a strategy to improve CO2 uptake in the presence of water. Notably, both CALF-20M-w and CALF-20M-e retain over 20% of their initial CO2 capture efficiency at 70% RH – a threshold at which CALF-20 shows negligible CO2 uptake. Grand canonical Monte Carlo (GCMC) simulations reveal that the methyl group hinders water network formation in the pores of CALF-20M-w and CALF-20M-e and enhances their CO2 selectivity over N2 in the presence of high moisture content. Moreover, calculated radial distribution functions indicate that introducing the methyl group into the triazolate linker increases the distance between water molecules and Zn coordination bonds, offering insights into the origin of the enhanced moisture stability observed for CALF-20M-w and CALF-20M-e relative to CALF-20. Overall, this straightforward design strategy has afforded more robust sorbents that can potentially meet the challenge of effectively capturing CO2 in practical industrial applications.more » « less
-
Abstract The fabrication of MOF polymer composite materials enables the practical applications of MOF‐based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low‐loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge. The prepared sponge exhibited a hierarchically porous structure, high MOF loading (up to ≈90 %), good solvent resistance, and high catalytic activity for the liquid‐ and solid‐state hydrolysis of nerve agent simulants. Moreover, the MOF/ bacterial cellulose composite sponge reported here showed a nearly 8‐fold enhancement in the protection against an ultra‐toxic nerve agent (GD) in permeability studies as compared to a commercialized adsorptive carbon cloth. The results shown here present an essential step toward the practical application of MOF‐based protective gear against nerve agents.more » « less
-
Abstract Wearable personal protective equipment that is decorated with photoactive self‐cleaning materials capable of actively neutralizing biological pathogens is in high demand. Here, we developed a series of solution‐processable, crystalline porous materials capable of addressing this challenge. Textiles coated with these materials exhibit a broad range of functionalities, including spontaneous reactive oxygen species (ROS) generation upon absorption of daylight, and long‐term ROS storage in dark conditions. The ROS generation and storage abilities of these materials can be further improved through chemical engineering of the precursors without altering the three‐dimensional assembled superstructures. In comparison with traditional TiO2or C3N4self‐cleaning materials, the fluorinated molecular coating material HOF‐101‐F shows a 10‐ to 60‐fold enhancement of ROS generation and 10‐ to 20‐fold greater ROS storage ability. Our results pave the way for further developing self‐cleaning textile coatings for the rapid deactivation of highly infectious pathogenic bacteria under both daylight and light‐free conditions.more » « less
An official website of the United States government
